default search action
16th FOGA 2021: Virtual Event, Austria
- Steffen Finck, Michael Hellwig, Pietro S. Oliveto:
FOGA '21: Foundations of Genetic Algorithms XVI, Virtual Event, Austria, September 6-8, 2021. ACM 2021, ISBN 978-1-4503-8352-3 - Laurent Meunier, Iskander Legheraba, Yann Chevaleyre, Olivier Teytaud:
Asymptotic convergence rates for averaging strategies. 1:1-1:11 - Carsten Witt:
On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms. 2:1-2:15 - Luke Branson, Andrew M. Sutton:
Focused jump-and-repair constraint handling for fixed-parameter tractable graph problems. 3:1-3:10 - Dogan Corus, Pietro S. Oliveto, Donya Yazdani:
Automatic adaptation of hypermutation rates for multimodal optimisation. 4:1-4:12 - Mario Alejandro Hevia Fajardo, Dirk Sudholt:
Self-adjusting offspring population sizes outperform fixed parameters on the cliff function. 5:1-5:15 - Nils Müller, Tobias Glasmachers:
Non-local optimization: imposing structure on optimization problems by relaxation. 6:1-6:10 - Jonathan Heins, Jakob Bossek, Janina Pohl, Moritz Seiler, Heike Trautmann, Pascal Kerschke:
On the potential of normalized TSP features for automated algorithm selection. 7:1-7:15 - Jakob Bossek, Dirk Sudholt:
Do additional optima speed up evolutionary algorithms? 8:1-8:11 - Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. 9:1-9:11 - Denis Antipov, Semen Naumov:
The effect of non-symmetric fitness: the analysis of crossover-based algorithms on RealJump functions. 10:1-10:15
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.