


default search action
21st EuroGP 2018: Parma, Italy
- Mauro Castelli
, Lukás Sekanina, Mengjie Zhang, Stefano Cagnoni, Pablo García-Sánchez:
Genetic Programming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings. Lecture Notes in Computer Science 10781, Springer 2018, ISBN 978-3-319-77552-4
Long Presentations
- Filipe Assunção
, Nuno Lourenço
, Penousal Machado, Bernardete Ribeiro
:
Using GP Is NEAT: Evolving Compositional Pattern Production Functions. 3-18 - Filipe Assunção
, Nuno Lourenço
, Penousal Machado
, Bernardete Ribeiro
:
Evolving the Topology of Large Scale Deep Neural Networks. 19-34 - Timothy Atkinson
, Detlef Plump
, Susan Stepney
:
Evolving Graphs by Graph Programming. 35-51 - Mauro Castelli
, Ivo Gonçalves
, Luca Manzoni
, Leonardo Vanneschi
:
Pruning Techniques for Mixed Ensembles of Genetic Programming Models. 52-67 - Ting Hu
, Karoliina Oksanen, Weidong Zhang, Edward Randell, Andrew Furey, Guangju Zhai:
Analyzing Feature Importance for Metabolomics Using Genetic Programming. 68-83 - Andrew Lensen
, Bing Xue
, Mengjie Zhang:
Generating Redundant Features with Unsupervised Multi-tree Genetic Programming. 84-100 - Eric Medvet
, Alberto Bartoli
:
On the Automatic Design of a Representation for Grammar-Based Genetic Programming. 101-117 - Takfarinas Saber
, David Fagan, David Lynch, Stepán Kucera, Holger Claussen
, Michael O'Neill
:
Multi-level Grammar Genetic Programming for Scheduling in Heterogeneous Networks. 118-134 - Robert J. Smith
, Malcolm I. Heywood
:
Scaling Tangled Program Graphs to Visual Reinforcement Learning in ViZDoom. 135-150 - Nadia S. Taou, Michael A. Lones
:
Towards in Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States. 151-165 - Leonardo Vanneschi
, Kristen M. Scott, Mauro Castelli
:
A Multiple Expression Alignment Framework for Genetic Programming. 166-183
Short Presentations
- David Grochol, Lukás Sekanina:
Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions. 187-202 - Jakub Husa, Roman Kalkreuth:
A Comparative Study on Crossover in Cartesian Genetic Programming. 203-219 - William B. Langdon, Justyna Petke
, Ronny Lorenz
:
Evolving Better RNAfold Structure Prediction. 220-236 - João Macedo
, Carlos M. Fonseca
, Ernesto Costa
:
Geometric Crossover in Syntactic Space. 237-252 - John Park, Yi Mei
, Su Nguyen
, Gang Chen, Mengjie Zhang:
Investigating a Machine Breakdown Genetic Programming Approach for Dynamic Job Shop Scheduling. 253-270 - Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes
, Hugo Jair Escalante:
Structurally Layered Representation Learning: Towards Deep Learning Through Genetic Programming. 271-288 - Duc Minh Tran, Claudia d'Amato
, Nguyen Thanh Binh, Andrea G. B. Tettamanzi
:
Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-relational Association Rules in the Semantic Web. 289-305 - Daniel Yska, Yi Mei
, Mengjie Zhang:
Genetic Programming Hyper-Heuristic with Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling. 306-321

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.