


default search action
CODAI 2023: Hamburg, Germany
- Proceedings of the 2023 Workshop on Compilers, Deployment, and Tooling for Edge AI, CODAI 2023, Hamburg, Germany, 21 September 2023. ACM 2023
- Yao Lu
, Hiram Rayo Torres Rodriguez
, Sebastian Vogel
, Nick van de Waterlaat
, Pavol Jancura
:
Scaling Up Quantization-Aware Neural Architecture Search for Efficient Deep Learning on the Edge. 1-5 - Samira Ahmadifarsani
, Rafael Stahl
, Philipp van Kempen
, Daniel Mueller-Gritschneder
, Ulf Schlichtmann
:
Towards Rapid Exploration of Heterogeneous TinyML Systems using Virtual Platforms and TVM's UMA. 6-10 - Endri Bezati
:
ART: An Actor transition systems RunTime for enabling efficient partitioning of neural network graphs. 11-15 - Matheus Fellype Ferraz
, Birte Kristina Friesel
, Olaf Spinczyk
:
Pros and Cons of Executable Neural Networks for Deeply Embedded Systems. 16-20 - Federico Nicolás Peccia
, Oliver Bringmann
:
Integration of a systolic array based hardware accelerator into a DNN operator auto-tuning framework. 21-26 - Bernhard Vogginger
, Florian Kelber
, Shambhavi Balamuthu Sampath
, Johannes Partzsch
, Christian Mayr
:
Performance models and energy-optimal scheduling of DNNs on many-core hardware with dynamic power management. 27-31 - Philipp van Kempen
, Rafael Stahl
, Daniel Mueller-Gritschneder
, Ulf Schlichtmann
:
MLonMCU: TinyML Benchmarking with Fast Retargeting. 32-36 - Chen Liu
, Matthias Jobst
, Liyuan Guo
, Xinyue Shi
, Johannes Partzsch
, Christian Mayr
:
Deploying Machine Learning Models to Ahead-of-Time Runtime on Edge Using MicroTVM. 37-40 - Lotfi Abdelkrim Mecharbat
, Hadjer Benmeziane
, Hamza Ouarnoughi
, Smaïl Niar
:
HyT-NAS: Hybrid Transformers Neural Architecture Search for Edge Devices. 41-45

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.