


default search action
BIAS 2021: Lucca, Italy
- Ludovico Boratto
, Stefano Faralli
, Mirko Marras
, Giovanni Stilo
:
Advances in Bias and Fairness in Information Retrieval - Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, Lucca, Italy, April 1, 2021, Proceedings. Communications in Computer and Information Science 1418, Springer 2021, ISBN 978-3-030-78817-9 - Yunhe Feng, Daniel Saelid, Ke Li, Ruoyuan Gao
, Chirag Shah
:
Towards Fairness-Aware Ranking by Defining Latent Groups Using Inferred Features. 1-8 - Michael Färber
, Frederic Bartscherer
:
Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion. 9-13 - Bin Han, Chirag Shah
, Daniel Saelid:
Users' Perception of Search-Engine Biases and Satisfaction. 14-24 - Toshihiro Kamishima
, Shotaro Akaho
, Yukino Baba, Hisashi Kashima:
Preliminary Experiments to Examine the Stability of Bias-Aware Techniques. 25-35 - Mykola Makhortykh
, Aleksandra Urman
, Roberto Ulloa
:
Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines. 36-50 - Elena Beretta
, Antonio Vetrò
, Bruno Lepri
, Juan Carlos De Martin
:
Equality of Opportunity in Ranking: A Fair-Distributive Model. 51-63 - Giorgio Maria Di Nunzio, Alessandro Fabris
, Gianmaria Silvello
, Gian Antonio Susto
:
Incentives for Item Duplication Under Fair Ranking Policies. 64-77 - Francisco Guíñez
, Javier Ruiz
, María Ignacia Sánchez
:
Quantification of the Impact of Popularity Bias in Multi-stakeholder and Time-Aware Environments. 78-91 - Joanna Misztal-Radecka
, Bipin Indurkhya
:
When Is a Recommendation Model Wrong? A Model-Agnostic Tree-Based Approach to Detecting Biases in Recommendations. 92-105 - Baris Kirdemir, Joseph Kready, Esther Mead, Muhammad Nihal Hussain, Nitin Agarwal:
Examining Video Recommendation Bias on YouTube. 106-116 - Chenyu Jiang, Bowen Wu, Sanghamitra Dutta, Pulkit Grover
:
An Information-Theoretic Measure for Enabling Category Exemptions with an Application to Filter Bubbles. 117-129 - Fabian Haak
, Philipp Schaer
:
Perception-Aware Bias Detection for Query Suggestions. 130-142 - Tobias D. Krafft
, Martin Reber
, Roman Krafft
, Anna Couturier
, Katharina Anna Zweig
:
Crucial Challenges in Large-Scale Black Box Analyses. 143-155 - Luisa Simões, Vaibhav Shah
, João Silva, Nelson Rodrigues
, Nuno Leite, Nuno Lopes:
New Performance Metrics for Offline Content-Based TV Recommender System. 156-169

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.