


default search action
ANNPR 2006: Ulm, Germany
- Friedhelm Schwenker, Simone Marinai:
Artificial Neural Networks in Pattern Recognition, Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings. Lecture Notes in Computer Science 4087, Springer 2006, ISBN 3-540-37951-7
Unsupervised Learning
- Edmondo Trentin:
Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions. 1-10 - Zouhour Neji Ben Salem, Laurent Bougrain, Frédéric Alexandre:
Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition. 11-20 - Frank Michler, Thomas Wachtler, Reinhard Eckhorn:
Adaptive Feedback Inhibition Improves Pattern Discrimination Learning. 21-32
Semi-supervised Learning
- Barbara Hammer
, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann:
Supervised Batch Neural Gas. 33-45 - Thomas Villmann, Udo Seiffert, Frank-Michael Schleif, Cornelia Brüß, Tina Geweniger, Barbara Hammer
:
Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. 46-56 - Hans A. Kestler
, Johann M. Kraus
, Günther Palm, Friedhelm Schwenker:
On the Effects of Constraints in Semi-supervised Hierarchical Clustering. 57-66 - Neamat El Gayar
, Friedhelm Schwenker, Günther Palm:
A Study of the Robustness of KNN Classifiers Trained Using Soft Labels. 67-80
Supervised Learning
- Joaquín Torres-Sospedra
, Carlos Hernández-Espinosa, Mercedes Fernández-Redondo:
An Experimental Study on Training Radial Basis Functions by Gradient Descent. 81-92 - Jianwei Yin, Xiaoming Liu, Zhilin Feng, Jinxiang Dong:
A Local Tangent Space Alignment Based Transductive Classification Algorithm. 93-106 - Xiaoming Liu, Jianwei Yin, Zhilin Feng, Jinxiang Dong:
Incremental Manifold Learning Via Tangent Space Alignment. 107-121 - Johannes Fieres, Karlheinz Meier, Johannes Schemmel:
A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware. 122-132 - Hilario López García
, Iván Machón González
:
Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks. 133-143
Support Vector Learning
- Yuya Kamada, Shigeo Abe
:
Support Vector Regression Using Mahalanobis Kernels. 144-152 - Shinya Katagiri, Shigeo Abe
:
Incremental Training of Support Vector Machines Using Truncated Hypercones. 153-164 - Yusuke Torii, Shigeo Abe
:
Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques. 165-176
Multiple Classifier Systems
- Barbara Spillmann, Michel Neuhaus, Horst Bunke:
Multiple Classifier Systems for Embedded String Patterns. 177-187 - Lionel Prevost, Rachid Belaroussi, Maurice Milgram:
Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images. 188-197 - Rebecca Fay, Friedhelm Schwenker, Christian Thiel, Günther Palm:
Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory. 198-209 - Joaquín Torres-Sospedra
, Carlos Hernández-Espinosa, Mercedes Fernández-Redondo:
Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization. 210-220
Visual Object Recognition
- Alexander Gepperth:
Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks. 221-232 - Martin Antenreiter, Christian Savu-Krohn, Peter Auer
:
Visual Classification of Images by Learning Geometric Appearances Through Boosting. 233-243 - Monica Bianchini
, Lorenzo Sarti:
An Eye Detection System Based on Neural Autoassociators. 244-252 - Friedhelm Schwenker, Andreas Sachs, Günther Palm, Hans A. Kestler
:
Orientation Histograms for Face Recognition. 253-259
Data Mining in Bioinformatics
- Hans A. Kestler
, Christoph Müssel:
An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification. 260-273 - Marc Strickert, Nese Sreenivasulu
, Silke Peterek, Winfriede Weschke, Hans-Peter Mock
, Udo Seiffert:
Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data. 274-285 - Hans A. Kestler
, Wolfgang Lindner, André Müller:
Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles. 286-297

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.